Introduction to string
indexing

> UNIVERSITY OF
M_AR l I ,Z s ‘ q D All slides in this lecture not marked with “*” are courtesy of Ben
= Langmead (www.langmead-lab.org/teaching-materials).

http://www.langmead-lab.org/teaching-materials

Tries

A trie (pronounced “try”) is a irooted tree representing a collection of strings with
one node per common prefix

Smallest tree such that:
Each edge is labeled with a character c € 2
A node has at most one outgoing edge labeled ¢, forc e 2

Each key is “spelled out” along some path starting at the root

Natural way to represent either a set or a map where keys are strings

This structure Is also known as a 2-tree

Tries: example

Represent this map with a trie:

Key Value
1 n

Instant

internal 2

S
Internet 3 t Q
d
The smallest tree such that:
Each edge is labeled with a character c € 2 ; %
t
O

: d
A node has at most one outgoing edge

labeled ¢, forc e 2.

Each key is “spelled out” along some path @ @
starting at the root

Tries

How do we check whether “infer”is in
the trie?

n
s‘/CD\t
e
r
n n
a e

Tries

How do we check whether “infer”is in
the trie?

Start at root and try to match successive
characters of “infer” to edges in trie

Tries

How do we check whether “infer”is in
the trie?

Start at root and try to match successive
characters of “infer” to edges in trie

Tries

How do we check whether “infer”is in

. i
the trie?

n
Start at root and try to match successive
characters of “infer” to edges in trie

%
O

| t

9O

Tries

How do we check whether “infer”is in

the trie? o
oops, no“f

Start at root and try to match successive
characters of “infer” to edges in trie

@

Tries

Matching “interesting”

Tries

Matching “interesting”

Tries

Matching “interesting”

i“_n

oops, o “e

Tries

Matching “insta”

Tries

Matching “insta”

Tries

Matching “insta”

No value associated
with node, so “insta”
wasn’t a key

Tries

Matching “insta”

No value associated
with node, so “insta”
wasn't a key

But it was a prefix
of some key

Tries

Matching “instant”

Tries: example

Checking for presence of a key P,
wheren=|P]|,is O(n) time

If total length of all keys is N, trie
has O(N) nodes

What about | 2 | ?

Depends how we represent outgoing
edges. If we don'tassume |2 |isa

small constant, it shows up in one or
both bounds.

Tries

How to represent edges between a
node and its children?

;
ey

@

Tries

How to represent edges between a
node and its children?

Map (from characters to child nodes)

;
ey

@

Tries

How to represent edges between a
node and its children?

Map (from characters to child nodes)

/CD\ ldea 1: Hash table

@

Tries

How to represent edges between a
i node and its children?

n Map (from characters to child nodes)

S/CD\ L ldea 1: Hash table

ldea 2: Sorted lists

t e
a I
N N
t d e

Tries

How to represent edges between a
i node and its children?

n Map (from characters to child nodes)

S/CD\ L ldea 1: Hash table

ldea 2: Sorted lists

t e

Assuming hash table, it's reasonable to
a r say querying with P, | P [=n, is O(n) time
n n
t a e

Tries: another example

We can index T with a trie. The trie maps
substrings to offsets where they occur

L QL
Q N
oo |~

Q)
/ﬁn
AN

at 14 C C

cC 12 . t @ 12,2
t t

gt 18

gt 0 @ 18,0

Indexing with suffixes

Some indices (e.qg. the inverted index) are based on extracting substrings from T

A very different approach is to extract suffixes from T. This will lead us to
some interesting and practical index data structures:

A O

L e w 6| $ S A
;(Q L BANANA$. AS A N

<’ ,5 ‘ Qn Ov °\ ’,O ANA$S A N

/. ® .

S ; : NRE 0| BANANAS B $
? : a ¢ /\ Nas NAS N A
H e 0 y NANAS N A

é 3 1

"
‘_)—. o -

o OuffixTrie Suffix Tree Suffix Array FM Index

Suffix trie

Build a trie containing all suffixes of a text T

[: GTTATAGCTGATCGCGGCGTAGCGG

GTTATAGCTGATCGCGGCGTAGCGG
TTATAGCTGATCGCGGCGTAGCGAG
TATAGCTGATCGCGGCGTAGCGAG
ATAGCTGATCGCGGCGTAGCGAG
TAGCTGATCGCGGCGTAGCGAG
AGCTGATCGCGGCGTAGCGG
GCTGATCGCGGCGTAGCGAG
CTGATCGCGGCGTAGCGAG
TGATCGCGGCGTAGCGG
GATCGCGGCGTAGCGG
ATCGCGGCGTAGCGG
TCGCGGCGTAGCGG
CGCGGCGTAGCGG
GCGGCGTAGCGAG
CGGCGTAGCGG

GGCGTAGCGG

GCGTAGCGG

CGTAGCGAG

GTAGCGG

TAGCGG

AGCGG

GCGQG

CGG

GG

G

m(m+1)/2
chars

Suffix trie

First add special terminal character $ to the end of T

S is a character that does not appear elsewhere in T, and we define it
to be less than other characters (for DNA:S<A<C<G<T)

S enforces a rule we're all used to using: e.g.“as” comes before “ash”in the
dictionary. $ also guarantees no suffix is a prefix of any other suffix.

I: GTTATAGCTGATCGCGGCGTAGCGG
GTTATAGCTGATCGCGGCGTAGCGG
TTATAGCTGATCGCGGCGTAGCGG
TATAGCTGATCGCGGCGTAGCGG
ATAGCTGATCGCGGCGTAGCGG
TAGCTGATCGCGGCGTAGCGG
AGCTGATCGCGGCGTAGCGG
GCTGATCGCGGCGTAGCGG
CTGATCGCGGCGTAGCGG
TGATCGCGGCGTAGCGG
GATCGCGGCGTAGCGG
ATCGCGGCGTAGCGG
TCGCGGCGTAGCGG
CGCGGCGTAGCGG
GCGGCGTAGCGG

CGGCGTAGCGGS

GGCGTAGCGGS
CCGCGTAGCGG S

AAAAAAAAAAAAAAA

Suffix trie

T: aba

What's the suffix trie?

Suffix trie

T: abas

What's the suffix trie?

Suffix trie

T: abas

What's the suffix trie?

Suffix trie

T: abas d
What's the suffix trie? O
b
QVO

O

Suffix trie

T: abas

What's the suffix trie?

O_m

Suffix trie

b
T: abas

d
What's the suffix trie?
S
b
OVO s

S

O

Suffix trie

b
T: abas ; d
What's the suffix trie?
S A]
OVO s

S

Suffix trie

T: abaaba

Suffix trie

T: abaaba$

Suffix trie

T: abaaba$

Suffix trie

T: abaaba$

Each path from root to leaf represents a
suffix; each suffix is represented by some !
path from root to leaf

Q

SF
O
QD

O
~
N
~
N

Q
°F]

O

<2

Suffix trie

Shortest
(non-empty)
suffix

T: abaaba$

Each path from root to leaf represents a
suffix; each suffix is represented by some !
path from root to leaf

Q

()
N
()
()
N

&
O

()
N

SF
O
QD

O
~
N
~
N

Q
°F]

O

<2

Suffix trie

Shortest
(non-empty)
suffix

T: abaabas "

Each path from root to leaf represents a " ‘
suffix; each suffix is represented by some

path from root to leaf
Q 0 0 C
Q 0 O
0 O

‘ Longest suffix

O

N

Q

Suffix trie

a b \$%
y Shortest
T: abaabas " (non-empty)
suffix
Each path from root to leaf represents a " ‘
suffix; each suffix is represented by some

path from root to leaf <

O

Would this still be the case if we hadn't

added $? () " ‘ (
Q 0 O
ﬁ O

‘ Longest suffix

N

Q

Suffix trie

Shortest

‘ (non-empty)

suffix

T: abaaba TS: abaaba$ "

a

Each path from root to leaf represents a " ‘
suffix; each suffix is represented by some

path from root to leaf
Q ib C
Would this still be the case if we hadn't
added $? () " ‘ (
Q 0 @

ib O

‘ Longest suffix

N

O

N

Q

Without $, no way to
Sufﬁx trie spell out this suffix & end

at a leaf in the trie.

I: abaaba

Each path from root to leaf represents a
suffix; each suffix is represented by some
path from root to leaf

Would this still be the case if we hadn't
added $? No

Without the $, we have
problems; e.g. here
‘ba’ Is a prefix of “baaba’

Suffix trie

Think of each node as having a
label, spelling out characters on
path from root to node

SF
O
QD

O
()
N
()
N

Q
°F]

O

<2

Suffix trie

Think of each node as having a
label, spelling out characters on
path from root to node

baa

()
N
()
N

<A
O

a8 a8 a8
NN

T\
0=

<2

Suffix trie

How do we check whether a string S is a
substring of T?

Suffix trie

How do we check whether a string S is a
substring of T?

Note: Each of T's substrings is spelled out along a
path from the root.

SF
O
QD

O
()
N
()
N

Q
°F]

O

<2

Suffix trie

How do we check whether a string S is a
substring of T?

Note: Each of T's substrings is spelled out along a
path from the root.

Every substring is a prefix of some suffix of T.

SF
O
QD

O
()
N
()
N

Q
°F]

O

<2

Suffix trie

How do we check whether a string S is a
substring of T?

Note: Each of T's substrings is spelled out along a

path from the root. bk a \$
Every substring is a prefix of some suffix of T. <> C <>
a a \$ b
Start at the root and follow the edges <> <> <>

labeled with the characters of S

SF
O
QD

O
~
N
~
N

Q
°F]

O

<2

Suffix trie

How do we check whether a string S is a
substring of T?

Note: Each of T's substrings is spelled out along a
path from the root.

b a a \9$
Every substring is a prefix of some suffix of T. <> C <>
a a \$ b
Start at the root and follow the edges
labeled with the characters of S <$> <>
If we “fall off” the trie -- i.e. there is no Q <> <>

outgoing edge for next character of S, then
Sis not a substring of T

Q
°F]

C
O

O

<2

Suffix trie

How do we check whether a string S is a
substring of T?

Note: Each of T's substrings is spelled out along a
path from the root.

b a a \9$
Every substring is a prefix of some suffix of T. <> C <>
a a \$ b
Start at the root and follow the edges
labeled with the characters of S <> <> <>
5 b a
If we “fall off” the trie -- i.e. there is no
outgoing edge for next character of S, then Q <> <>
Sis not a substring of T i i
If we exhaust S without falling off, Sis a <> Q

<2

substring of T

O

Suffix trie 0

a P \$
How do we check whether a string S is a ‘ " ‘
substring of T? a b \$ a
Note: Each of T's substrings is spelled out along a ‘ “
path from the root. L AV
Every substring is a prefix of some suffix of T. <> (‘

a a \5 p 2 ad
Start at the root and follow the edges <> <> <> Yes, it's a substring
labeled with the characters of S

5 b a

If we “fall off” the trie -- i.e. there is no
outgoing edge for next character of S, then O <> <

N

Sis not a substring of T o :
If we exhaust S without falling off, Sis a <> Q
substring of T S

O

Suffix trie T = abaabas

a b \$
How do we check whether a string S is a (‘ ‘
substring of T? a [b \$
Note: Each of T's substrings is spelled out along a " ‘

path from the root.

Every substring is a prefix of some suffix of T. <> ‘. <>

Start at the root and follow the edges <> ‘. ‘ C)

labeled with the characters of S

If we “fall oft” the trie -- i.e. there is no Q ‘. C[?

outgoing edge for next character of S, then
Sis not a substring of T

S = abaaba
If we exhaust S without falling off, S is a Yes, it's a substring

substring of T S

O

SUfﬁX trie T = abaaba$ 0

a b \$
How do we check whether a string S is a ‘ (‘ ‘
substring of T? a b \$ a
Note: Each of T's substrings is spelled out along a ‘ "
path from the root. L \g
Every substring is a prefix of some suffix of T. <> ('. ‘
a a \5 0
Start at the root and follow the edges <> <> Q
labeled with the characters of S X
A ® 'S =baabb
If we “fall off” the trie -- i.e. there is no Q <> <> No, not a substring
outgoing edge for next character of S, then
Sis not a substring of T i k
If we exhaust S without falling off, Sis a <> Q
substring of T S

O

Suffix trie

How do we check whether a string Sis a
suffix of T?

Same procedure as for substring, but
additionally check terminal node for $ child

O
Q

OQ O
OO

SF
O
QD

O
()
N
~
N

Q
°F]

O

<2

Suffix trie 0

a b \$

How do we check whether a string S is a ‘ "
suffix of T? a b \$ a

Same procedure as for substring, but i ‘ ‘ :
additionally check terminal node for $ child i |

O C @

) S =Dbaa
Not a suffix

a

O C

$

O C
C

NI

O

() R VAR
N

N
N

Q

o=

<2

Suffix trie

b \$

How do we check whether a string S is a " ‘
suffix of T? a b \$ a

Same procedure as for substring, but] ‘
additionally check terminal node for $ child "~ |S=aba

O Q) lsasum
O
O

y. -

Q
O O

OO0 O

O O

$

O

Suffix trie

How do we count the number of times a
string S occurs as a substring of T?

OQ O

&
O

N N

N N

<2

Suffix trie

How do we count the number of times a
string S occurs as a substring of T?

Suffix trie

How do we count the number of times a
string S occurs as a substring of T?

Follow path labeled with S. If we fall off,
answer is 0. If we end up at node n,
answer equals # of leaves in subtree
rooted at n.

Suffix trie

a b \S
How do we count the number of times a " ‘
string S occurs as a substring of T? a fb A\ a
Follow path labeled with S. If we fall off, P P [S=aba
answer equals # of leaves in subtree -
rooted at n. P

O OO0
OO0 O

a 5

O

Suffix trie

a b \S
How do we count the number of times a " ‘
string S occurs as a substring of T? a fo \$ a
Follow path labeled with S. If we fall off, b Sl F T —
answer is 0. If we end up at node n, () ™ |2 occurrences
answer equals # of leaves in subtree <
rooted at n. b

O OO0

Leaves can be counted with depth-first

traversal. Q <> <>

a $

O

Suffix trie

How do we find the longest repeated
substring of T?

Suffix trie

How do we find the longest repeated
substring of T?

Find the deepest node with more than
one child

SF
O
QD

O
()
N
()
N

Q
°F]

O

<2

Suffix trie

How do we find the longest repeated
substring of T?

Find the deepest node with more than
one child

SF
O
QD

O
()
N
()
N

Q
°F]

O

<2

Suffix trie

How many nodes does the suffix trie have?

Is there a class of string where the number
of suffix trie nodes grows linearly with m?

Suffix trie

How many nodes does the suffix trie have?

Is there a class of string where the number
of suffix trie nodes grows linearly with m?

Yes: e.g. a string of m a’s in a row (a™)

[= aaaa

* 1 Root

* m nodes with
incoming a edge

* m+ 1 nodes with
incoming $ edge

2m + 2 nodes

Suffix trie

Is there a class of string where the number
of suffix trie nodes grows with m?2?

Suffix trie

Is there a class of string where the number . /O\
of suffix trie nodes grows with m2? I = aaabbb /Q °

Yes: a"bn

¢ v P
e 1 root

e n nodes along “b chain,’ right ‘ ¢ Fiqure & example
e n nodes along “a chain,” middle b ° y

» n chains of n“b" nodes hanging off each”a chain” node @ DPyCarlKingsford
e 2n+ 1 $ leaves (not shown)

N2+ 4n + 2 nodes, where m = 2n

Suffix trie: upper bound on size

Could worst-case # nodes be worse than O(m?2)?

Max # nodes from top to bottom
= length of longest suffix + 1

Suffix trie =m+ 1

Deepest leaf

S ——————————
Max # nodes from left to right

= max # distinct substrings of any length
<m

O(m?) is worst case

Suffix trie: actual growth

Built suffix tries for the first
500 prefixes of the lambda
phage virus genome

Black curve shows how #
nodes increases with prefix
length

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

= m(m+1)/2
— gctual
— 2M+2

I I I I I
0 100 200 300 400

Length prefix over which suffix trie was built

500

Suffix trie: actual growth

Built suffix tries for the first
500 prefixes of the lambda
phage virus genome

Black curve shows how #
nodes increases with prefix
length

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

= m(m+1)/2
— gctual
— 2M+2

0 100 200 300 400

Length prefix over which suffix trie was built

500

Suffix trie: actual growth

Built suffix tries for the first
500 prefixes of the lambda
phage virus genome

Black curve shows how #
nodes increases with prefix
length

Actual growth much
closer to worst case
than to best!

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

= m(m+1)/2
— gctual
— 2M+2

0 100 200 300 400

Length prefix over which suffix trie was built

500

Suffix trie: actual growth

Built suffix tries for the first
500 prefixes of the lambda
phage virus genome

Black curve shows how #
nodes increases with prefix
length

suffix trie nodes

50000 100000 150000 200000 250000

0

—o— mN2
—6— actual
e m

I I I I
100 200 300 400

Length prefix over which suffix trie was built

500

Suffix tries = Suffix trees

Suffix Tree Definitions

A Z+-tree IS a rooted tree, T, where each edge is labeled with non-empty
strings, where no node has two outgoing edges labeled with strings having the
same first character. T is compact if all internal nodes have > 2 children.

for a node v in T, depth(v) or node-depth(v) is the distance from v to the root.
node-depth(r) = O

string(v) = concatenation of all characters on the pathr ~ v

string-depth(v) = |string(v)| (note: string-depth(v) > node-depth(v))

for a string x, if 3 node v with string(v) = x, we say node(x) = v

T displays string x if 3 node v and string y such that xy = string(v)

words(T) = { x | T displays x}

A suffix tree of string s is a compact 2+-tree such that words(T)
= {s’ | s’ is a substring of s}

Defs. from: http://profs.sci.univr.it/~liptak/AL Bioinfo/files/sequence_analysis.pdf

http://profs.sci.univr.it/~liptak/ALBioinfo/files/sequence_analysis.pdf

Suffix trie: making it smaller

T = abaaba$ /P\ .
b

e ldea 1: Coalesce non-branching paths
ﬁf ¢ \' ? into a single edge with a string label

s iR z
¢ %o iy ¢

.

5 |
a . @ |
QS JETCRIRTTE : Reduces # nodes, edges,
s guarantees internal nodes have >1 child

Suffix tree leaves, | internal nodes, E edges

E=L+1-1

I =abaab
abaabas E > 2I (each internal node branches)

L+I-1=z2I=1=<L-1
but

L <m (at most m suffixes)
I<m-1
E=L+I-1<2m-2
E+L+I<4m-3& O(m)

s the total size O(m) now?

Suffix tree leaves, | internal nodes, E edges

E=L+1-1

I =abaab
abaabas E > 2I (each internal node branches)

L+I-1z2I=1<L-1
but

L <m (at most m suffixes)
I<m-1

E=L+I]-1=<2m-2

E+L+I<4m-3& O(m)

s the total size O(m) now?

NO: The total length of edge labels is quadratic in m.

Suffix tree

T = abaaba$ ldea 2: Store T itself in addition to the tree. Convert tree’s
edge labels to (offset, length) pairs with respect to T.

/Q\ T = abaaba$
Y $\‘ (O 1/Ci\(6 !V
SR

1, 2)
"o R
‘ aba$ 3

ﬂ.abi \0 61 3i

O\

> (1,2)

e

34

Space required for suffix tree is now O(m)

Suffix tree: leaves hold offsets where suffixes begin

T = abaaba$ /Ci\ T = abaaba$
(0, 1) (6,1) (0 1)}3\(6' D

(1,2) V1,2 g

(1,2) 6, 1) (6 1)’\
> J | J
51 ¢4
[4 J

Suffix tree: labels

Again, each node’s label equals the
I = abaaba5 concatenated edge labels from the root to
/Ci\ the node. These aren’t stored explicitly.
(0, 1)

(6, 1)
i g
\ M QN
\ (6/% Label ="ba
\ (3, 4)
4
\

]

=0
wlZ
w
N 2
U1

<« Label ="aaba$”

Suffix tree: labels

Because edges can have string labels, we

T = abaaba$ must distinguish two notions of “depth”
% 1)/Ci\(6, 1) * Node depth: how many edges we must
(1,2 Tel follow from the root to reach the node
(1, 2) 6, 1) (@%\ « Label depth: total length of edge labels
E éll (3, 4) for edges on path from root to node
6 1) (3,4)
' 1
3,4) 13 \
/ 2
0

Suffix tree: space caveat

T = abaaba$

Minor point:

We say the space taken by the edge labels is
O(m), because we keep 2 integers per edge and
there are O(m) edges

To store one such integer, we need enough bits
to distinguish m positions in T, i.e. ceil(logz m)
bits. We usually ignore this factor, since 64 bits is
plenty for all practical purposes.

Similar argument for the pointers / references
used to distinguish tree nodes.

Suffix tree: building

Naive method 1: build a suffix trie, then
coalesce non-branching paths and relabel
edges

Naive method 2: build a single-edge tree
representing only the longest suffix, then
augment to include the 2nd-longest, then
augment to include 3r9-longest, etc

Both are O(m?) time, but first uses
O(m?2) space while second uses O(m)

Naive method 2 is described in Gusfield 5.4

2) \
[5

1) (3, 4)

3 |
2

Suffix tree: building

Other methods for construction:

Ukkonen, Esko. "On-line construction of suffix trees."
Algorithmica 14.3 (1995): 249-260.

O(m) time and space

Has online property: if T arrives one character at a time, algorithm
efficiently updates suffix tree upon each arrival

We won't cover it here; see Gusfield Ch. 6 for details

Or just Google “Ukkonen’s algorithm”

suffix trie nodes

Suffix tree: actual growth

Built suffix trees for the first 500

prefixes of the lambda phage

virus genome

Black curve shows # nodes
increasing with prefix length

Remember suffix trie plot:

20000 40000 60000 80000 100000 120000

0
|

0 100 200 300 400

Length prefix over which suffix trie was built

500

suffix tree nodes

123 K
nodes

400 600 800 1000

200

2m

—— actual
e m

I I I I
100 200 300 400

Length prefix over which suffix tree was built

500

suffix trie nodes

Suffix tree: actual growth

Built suffix trees for the first 500

prefixes of the lambda phage

virus genome

Black curve shows # nodes
increasing with prefix length

Remember suffix trie plot:

20000 40000 60000 80000 100000 120000

0
|

0 100 200 300 400

Length prefix over which suffix trie was built

500

suffix tree nodes

123 K
nodes

400 600 800 1000

200

2m

—— actual
e m

I I I I
100 200 300 400

Length prefix over which suffix tree was built

500

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

Suffix trie
>100K nodes

= m(m+1)/2
— gctual
— PM+2

I I I I I
0 100 200 300 400

Length prefix over which suffix trie was built

500

suffix tree nodes

400 600 800 1000

200

Suffix tree

<1K nodes

2m

—— actual
e m

I I I I
100 200 300 400

Length prefix over which suffix tree was built

500

Suffix tree

How do we check whether a string Sis a
substring of T?

6

S = baa

| Yes, it's a

substring

Suffix tree

How do we check whether a string Sis a
substring of T?

Essentially same procedure as for
suffix trie, except we have to deal with

coalesced edges

6

S = baa

| Yes, it's a

substring

Suffix tree

How do we check whether a string Sis a
suffix of 77

Essentially same procedure as for

suffix trie, except we have to deal with
coalesced edges

Suffix tree

How do we count the number of times
a string S occurs as a substring of T?

Same procedure as for suffix trie

2

aba%/LafS

ba \$

C

aba$ \$

—

— 1

0 S =aba

Occurs twice

7 N
]
LvA

Suffix tree: applications

With suffix tree of T, we can find all matches of Pto T. Let k = # matches.
E.g.,P=ab, T=abaaba$

Step 1: walk down ab path

O(n) 11 /4
If we “fall off” there are no matches
Ok Step 2: visit all leaf nodes below
/ Report each leaf offset as match offset
With proper tree
modifications to O(n + k) time
access leaves
of a node In abaaba

O(1) each ab ab

Suffix tree application: find long common substrings

1.60406 - ~4
1.4406 4 .
Dots are maximal unique
g T 1 matches (MUMs), a kind of
™ long substring shared by
< two sequences
& 800000 |
B
)
i 600000 |
: Red = match was
400000 | 7 { between like strands,
green = different
200000 - i
strands
° l; 20(;000 400000 600:)00 80(;000 1e4+06 1.2(;»06 1 ,44;+O6 1.6e406

Helicobacter_pylon_26695

Axes show different strains of Helicobacter pylori, a bacterium
found in the stomach and associated with gastric ulcers

Suffix tree application: find longest common substring

To find the longest common substring (LCS) of X and Y, make a new

string X#Y $ where # and § are both terminal symbols. Build a suffix
tree for X#Y'§.

X =Xxabxa 2 % [tbabxba$ \b \$

Y =babxba

X#YS = xabxa#babxba$ bx @ @ > -
#babxba$ /bx \$ a \ba$ a X

Consider leaves: 4 @ 11 0 9 Y
OﬁSEtS In [O’ 4] are a#babxba$ ba$ #babxba$ \bxa#babxba$ bxba$ \$ a#babxba$ \ba$

suffixes of X, offsets in
[6, 11] are suffixes of Y

1 7 3 0 6 10 2 8

Traverse the tree and annotate each node according to whether leaves
below it include suffixes of X, Y or both

The deepest node annotated with both X and Y has LCS as its label.
O(| X|+|Y]|) time and space.

Suffix tree application: generalized suffix trees

This is one example of many applications where it is useful to build a
suffix tree over many strings at once

Such a tree is called a generalized suffix tree.

a X [babxba$ \b $
abx
#babxba$ /bx \$ a \ba$ a X
JTo [®E (@
a#babxba$ ba$ #babxba$ \bxa#babxba$ bxba$ \$ a#babxba$ \ba$

1 7 3 0 6 10 2 8

Longest Common Extension

Longest common extension:VVe are given strings S and T. In the future, many pairs (i,j) will be
provided as queries, and we want to quickly find:

the longest substring of S starting at i that matches a substring of T starting at j.

LCE(i,j) LCE(i,j)
S _T—_ T .
i .
Build generalized suffix tree for S and T. @

Preprocess tree so that lowest common ancestors
~~ LCA) can be found in constant time.This can be

LCA in
O(1) time done using range-minimum queries (RMQ)
\»https://wwvv.ics.uci.edu/~eppstein/261/BenFar—LCA—OO.pdf LCAL) ()

Create an array mapping suffix numbers to leaf

nodes. O
A
‘\

Given query (i,j): \ \
Find the leaf nodes for i and | R
Return string of LCA for i and | t :

Longest Common Extension

Longest common extension:VVe are given strings S and T. In the future, many pairs (i,j) will be

provided as queries, and we want to quickly find:

the longest substring of S starting at i that matches a substring of T starting at j.

LCE(i,))
S _T—_
i
Build generalized suffix tree for S and T.

Preprocess tree so that lowest common ancestors
~~ LCA) can be found in constant time.This can be

LCA |
O(1) tilrge done using range-minimum queries (RMQ)

\» https://www.ics.uci.edu/~eppstein/261/BenFar-LCA-00.pdf

Create an array mapping suffix numbers to leaf
nodes.

Given query (i,j):
Find the leaf nodes for i and |
Return string of LCA for i and |

O([5] + [T])

O([S] + [T])

O([S] + [T])

O(l)
O(LCAC(i)))

LCE(i,j
T —L')

A

-—
- _~~___/

Indexed search in practice : MUMMER

“Text” (human chr1)_ “Pattern” (LINE-1 Long interspersed nuclear element)

N

(base) rob@fermi mummer-4.0.0rc1 Z ./mummer -maxmatch data/chr1.fa data/linei1.fa | head -n100
> NC_OO0001.11:62194849-62212328

62194849 1 17480

62195013 125 21

62194973 165 21

62195059 17 35 MUMMER first builds an index on T (this

62195189 181 23

2195189 221 2 takes about a minute for chr1 on my

221 23
62195029 341 23 -
62195069 341 23 machine)
227144292 621 22
226080010 623 45
150924429 623 29
109966311 624 44

160754930 624 44 -|-
133736717 624

nen IS searches for maximal matches
195870013 624 44 shared between T and P — these are

155102021 624 31

39601269 624 31 output very fast (a second or so; and

35187449 624 30
168153630 624 30 there are many).
155228268 624 28
117635680 624 24
37579266 624 21
155399348 624 20
176178570 624 20
174043843 624 20
23923078 624 20
169606035 624 20
28188030 624 20
232504257 624 20
27791535 625 37
112543271 627 34
150082229 628 40

28521220 624 44

Suffix trees in the real world: MUMmMmer

MUMmer v3.32 time and memory scaling when indexing increasingly larger
fractions of human chromosome 1

Peak memory usage (megabytes)

1500 2000 2500 3000 3500

1000

500
I

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

Time (seconds)

40 60 80 100 120 140

20

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

For whole chromosome 1, took 2m:14s and used 3.94 GB memory

Suffix trees in the real world: MUMmMmer

Attempt to build index for whole human genome reference:

mummer: suffix tree construction failed: textlen=3101804822
larger than maximal textlen=536870908

We can predict it would have taken about 47 GB of memory

Suffix trees in the real world: the constant factor

While O(m) is desirable, the constant in front of the m limits wider use
of suffix trees in practice

Constant factor varies depending on implementation:

Estimate of MUMmer’s constant factor = 3.94 GB / 250 million nt
=~ 15.75 bytes per node

Literature reports implementations achieving as little as 8.5
bytes per node, but no implementation used in practice that |
know of is better than = 12.5 bytes per node

Kurtz, Stefan. "Reducing the space requirement of suffix trees." Software Practice
and Experience 29.13 (1999): 1149-1171.

Suffix tree: summary

G""ATAGCTGA"CGCGGCGTAGCGG%’ndmm
: : GTTATAGCTGATCGCGGCGTAGCGAG
.Organ!zesa”SUfﬁxeS.mtoan TTATAGCTGATCGCGGCGTAGCGGS
incredibly useful, flexible data TATAGCTGATCGCGGCGTAGCGGS
structure, in O(m) time and space ATAGCTGATCGCGGCGTAGCGGYS
TAGCTGATCGCGGCGTAGCGGS

A naive method (e.q. suffix trie) Aggfgﬁigggggggiﬁggggﬁ

could easily be quadratic or worse CTGATCGCGGCGTAGCGGS
TGATCGCGGCGTAGCGGS

Used in practice for whole genome alignment, GATCGCGGCG
ATCGCGGCGTAGCGAG

repeat identification, etc T CCCCECCTAGCC
CGCGGCGTAGCG

A LT GCGGCGTAGCG

_ CGGCGTAGCAG
4,1) (6,2) 7 (8,18)[(13,1) (3,1):12,14) (21,24) (9,817) 9(10,16) (7, 1)\, D) (16,1) (25,1:4 G G C G — A G C G
GCGTAGCG

CGTAGCAG
(17,925, 1) (8,18) \(23,3) (19,7)\(6,1) G T A G C G
L T 1 T » TAGCAG
(17,9)\(25,1) A G C G

13

>
)
@
)
()
A

m(m+1)/2
chars

(5,21)(12,14) (8,18)\(23,3) (14,12) (19, 7)\(16, 1) (4,22) \(6,2) 8,18)((15,1) [(20,6)\(2,24) (17,9) \(25,1)

3 10 5 20 12 17 2 6 18 0 15 23

)
NN
NN

Actual memory footprint (bytes per node) is
quite high, limiting usefulness

D
ANANANANARARANANNNNNENNANAND

A A A A A A A A A A A AAAAHA

Bonus Content (not required) :
Suffix tree construction

WOTD (Write-Only Top-Down) Construction

Giegerich, Robert, and Stefan Kurtz. "A comparison of imperative and purely functional
suffix tree constructions.” Science of Computer Programming 25.2 (1995): 187-218.

Build a suffix tree for string s$
Recursive construction:

For every branching node node(u), subtree of
node(u) is determined by all suffixes of s$
where u is a prefix.

Recursively construct subtree for all suffixes
where u is a prefix.

Definition: remaining suffixes of u

R(node(u)) = { v | uv is a suffix of s$ }

WOTD (Write-Only Top-Down) Construction

Build a suffix tree for string s$

Recursive construction:

-or every branching node node(u), subtree of node(u)
is determined by all suffixes of s$ where u is a prefix.

Recursively construct subtree for all suffixes where u is
a prefix.

Definition: remaining suffixes of u

R(node(u)) = { v | uvis a suffix of s$ }

Definition: c-group of node(u)

group(node(u), c) ={w e 2" | cw € R(nhode(u))}

WOTD (Write-Only Top-Down) Construction

def WOTD(T : tree, node(u): node):
for each ¢ € ¥ U {$}:

G = group(node(u), c) non-branching suffix
ucv = lcp(G)
it |G| == 1:

add leaf node(ucv) as a child of node(u)
else:

add inner node(ucv) as a child of node(u)
WOTD(T, node(ucv))

branching suffix

Start the algorithm by calling WOTD(T, node(e))

root noge

WOTD Example

s = ttatctctta$

O
ttatctctta}
tatctctta}
atctctta}

suffixes are tctcttasl

ctcttal

read top-to-pbottom tcttas$
cttal}l
tta}$
t a$
a $
$

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13l ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Example

S = lHatctctta

O
C
at T
t $ c t taccta
¢ t a atttas}
¢ t $ tcct$
C a ctta
t $ tct$
t c ta
a tt$
g t a
a$
$

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13l ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Example

S = lHatctctta

O
C
a n T
£ ¢ ct tac
C t a a t
t t $ t C
C a c t
t $ t C
t c t
a tt
g t a
a$
$

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13l ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Example

S = lHatctctta

O
C
a t
O e O
t $ C « 57 C t
C t a T a
t t$ o ® ®
C d t ct t
t t t$ t
d C a C
$ t $ t
t t
d d
$ $

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13l ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Example

S = lHatctctta

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13l ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Properties

« Worst case time still € O(|T[?)

- Expected case time € O(|T| log [T|)

* Write-only property & recursive construction lends
itself well to parallelism

* (Good caching properties (locality of reference tor substrings
belonging to a subtree)

* Jop-down construction order allows lazy construction
as discussed in:

Giegerich, Robert, Stefan Kurtz, and Jens Stoye. "Efficient implementation of lazy suffix trees."
Software: Practice and Experience 33.11 (2003): 1035-1049.

